Trapezoid

A trapezoid is a quadrilateral where two of the sides are parallel. The parallel sides are called bases.

If the other two sides are also parallel, the figure is a parallelogram. The sides that are not parallel are called legs.

 

Trapezoid

 

Variants

Isosceles trapezoid: \(b=d\). The base angles at each base are pairwise equal, and the diagonals are equal in length.

 

Isosceles trapezoid

 

Right trapezoid: Two of the angles are right.

 

Right trapezoid

 

Properties

  • The sum of the interior angles is 360°.
  • Along each leg, \( \angle A + \angle D = 180^\circ \) and \( \angle B + \angle C = 180^\circ \) (parallelism).
  • The midsegment (the line connecting the midpoints of the legs) has the length \( m=\tfrac{a+c}{2} \), and the area can be written \( A=m\cdot h \).

 

 

Area and perimeter

The standard formula for the area:

 

$$ \large A=\tfrac{h}{2}\,(a+c) $$

 

If the base angles at \(A\) and \(B\) are known, the lengths of the legs can be written as \( d=\tfrac{h}{\sin(\angle A)} \) and \( b=\tfrac{h}{\sin(\angle B)} \). Thus the perimeter becomes:

 

$$ \large P = (a+c) + h\!\left(\tfrac{1}{\sin(\angle A)}+\tfrac{1}{\sin(\angle B)}\right) $$

 

 

Area from four sides

If all four sides are known, the height and thus the area can be found without angles:

 

$$ \large A = \tfrac{1}{2}(a+c)\,\sqrt{\,b^2 - \Bigl(\tfrac{(a-c)^2 + b^2 - d^2}{2(a-c)}\Bigr)^2} $$

 

Here it is assumed that \(a \ne c\). For a parallelogram, take the limit \(a \to c\).

 

 

Diagonals

The diagonals are obtained with the cosine rule in the corresponding triangles:

 

$$ \large d_1 = \sqrt{a^2 + b^2 - 2ab\cos(\angle B)} $$

$$ \large d_1 = \sqrt{c^2 + d^2 - 2cd\cos(\angle D)} $$

$$ \large d_2 = \sqrt{a^2 + d^2 - 2ad\cos(\angle A)} $$

$$ \large d_2 = \sqrt{b^2 + c^2 - 2bc\cos(\angle C)} $$

 

In an isosceles trapezoid, \(d_1=d_2\).

 

 

Circumscribed circle

Only isosceles trapezoids can be inscribed in a circle. Equivalently, the opposite angle sums apply:

 

  • \(\angle A + \angle C = 180^\circ\)
  • \(\angle B + \angle D = 180^\circ\)

 

Center of circumscribed circle in trapezoid

 

The center of the circle can be found by drawing angle bisectors from angle C and D, and optionally also the perpendicular bisector of sides a and c (the symmetry axis).

Note that for any trapezoid, \( \angle A + \angle D = 180^\circ \) and \( \angle B + \angle C = 180^\circ \) hold as a consequence of parallel lines. That alone does not make it cyclic.

 

 

Inscribed circle

A trapezoid has an inscribed circle, tangent to all four sides, if and only if:

 

$$ \large a + c = b + d $$

 

Center of inscribed circle in trapezoid

 

The center of the circle can be found by drawing angle bisectors from the four angles.

For tangential quadrilaterals, it also holds that \( A = r \cdot s \), where \( r \) is the inradius and \( s \) is the semiperimeter.

 

 

Applications

  • Dividing into two right triangles plus a rectangle makes constructions and trigonometric calculations manageable.
  • The trapezoidal rule is used for numerical approximation of integrals.

 

 

 

 

Calculator

Formulas

Side a

$$ a=P-(b+c+d) $$

$$ a=\frac{2\cdot Area}{h}-c $$

$$ a=c+h\cdot\biggl(\frac{1}{tan(A)}+\frac{1}{tan(B)}\biggr) $$

$$ a = b \cdot \cos(B) + \sqrt{\,d_2^2 - b^2 \cdot \sin^2(B)\,} $$

$$ a = d \cdot \cos(A) + \sqrt{\,d_2^2 - d^2 \cdot \sin^2(A)\,} $$

Side b

$$ b=P-(a+c+d) $$

$$ b=\frac{h}{sin(B)} $$

$$ b = \frac{h}{\sin(C)} $$

$$ b = a \cdot \cos(B) + \sqrt{d_2^2 - a^2 \cdot \sin^2(B)} $$

$$ b = c \cdot \cos(C) + \sqrt{d_1^2 - c^2 \cdot \sin^2(C)} $$

Side c

$$ c=P-(a+b+d) $$

$$ c = \frac{2 \cdot Area}{h} - a $$

$$ c=a-h\cdot\biggl(\frac{1}{tan(A)}+\frac{1}{tan(B)}\biggr) $$

$$ c = d \cdot \cos(D) + \sqrt{d_1^2 - d^2 \cdot \sin^2(D)} $$

$$ c = b \cdot \cos(C) + \sqrt{d_2^2 - b^2 \cdot \sin^2(C)} $$

Side d

$$ d=P-(a+b+c) $$

$$ d=\frac{h}{sin(A)} $$

$$ d = \frac{h}{\sin(D)} $$

$$ d = c \cdot \cos(D) + \sqrt{d_1^2 - c^2 \cdot \sin^2(D)} $$

$$ d = a \cdot \cos(A) + \sqrt{d_2^2 - a^2 \cdot \sin^2(A)} $$

Height

$$ h=\frac{2\cdot Areal}{a+c} $$

$$ h=sin(B)\cdot b $$

$$ h=sin(A)\cdot d $$

$$ h=sin(D)\cdot d $$

$$ h=sin(C)\cdot b $$

Diagonal 1

$$ d_1=\sqrt{a^2+b^2-2\cdot a\cdot b\cdot cos(B)} $$

$$ d_1=\sqrt{c^2+d^2-2\cdot c\cdot d\cdot cos(D)} $$

Diagonal 2

$$ d_2=\sqrt{a^2+d^2-2\cdot a\cdot d\cdot cos(A)} $$

$$ d_2=\sqrt{b^2+c^2-2\cdot b\cdot c\cdot cos(C)} $$

Angle A

$$ A=180-D $$

$$ A=sin^{-1}\biggl(\frac{h}{d}\biggr) $$

$$ A=cos^{-1}\biggl(\frac{d^2+a^2-d_2^2}{2\cdot d\cdot a}\biggr) $$

Angle B

$$ B=180-C $$

$$ B=sin^{-1}\biggl(\frac{h}{b}\biggr) $$

$$ B=cos^{-1}\biggl(\frac{b^2+a^2-d_1^2}{2\cdot b\cdot a}\biggr) $$

Angle C

$$ C=180-B $$

$$ C=90+cos^{-1}\biggl(\frac{h}{b}\biggr) $$

$$ C=cos^{-1}\biggl(\frac{c^2+b^2-d_2^2}{2\cdot c\cdot b}\biggr) $$

Angle D

$$ D=180-A $$

$$ D=90+cos^{-1}\biggl(\frac{h}{d}\biggr) $$

$$ D=cos^{-1}\biggl(\frac{c^2+d^2-d_1^2}{2\cdot c\cdot d}\biggr) $$

Perimeter

$$ P=a+b+c+d $$

$$ P=a+c+\frac{h}{sin(A)}+\frac{h}{sin(B)} $$

Area

$$ A=\frac{(a+c)\cdot h}{2} $$